루빅스 큐브를 풀기 위해서는 수학 문제 풀이와 같이 특정한 공식이 필요합니다. 루빅스 큐브는 우리나라에는 1980년에 소개가 된 장난감으로서, 헝가리 부다페스트 대학의 상업 미술과 건축학 교수인 Erno Rubik 교수가 개발한 것입니다. 이 장난감은 처음에는 학생들에게 3차원의 개념을 이해시키기 위하여 1975년에 개발되었다고 합니다. |
|
|
|
||
큐빅은 전체적으로 모두 여섯 개의 면으로 이루어져 있고 총 26개의 조각으로 구성되어 있는데, 각 면의 가운데 조각(색칠한 부분) 6개는 그 위치가 변하지 않고 고정되어 있습니다. | ||
|
||||||||||
큐빅을 모두 맞추기 위해서는 다음과 같은 단계를 거쳐야 합니다. |
||||||||||
I |
|
II |
|
III |
|
IV |
|
|||
V |
|
VI |
|
VII |
|
VIII |
|
|||
I 단계 ; 윗면 '┼'자 맞추기. 이때, 옆 면의 가운데 색(검은 부분)과도 맞아야 합니다. |
★ I 단계와 II 단계는 일정한 공식이나 규칙이 있는 것이 아니고 조금만 생각하면 누구나 쉽게 맞출 수 있는 단계이므로 여기에서는 생략합니다. |
||
|
||||
|
1) A 와 B 가 색이 같도록 아랫줄(셋째줄)을 움직여 맞춥니다. ※ D조각이 색깔이 측면에 있을경우 한번 D의 조각 이 뒤면에 가고 그것을 180도 회전시켜 다시한번 공식을 시행하면. 맞는 조각위치에 가게 됩니다. | |||
|
바닥면을 위로 향하게 합니다. |
||||||||||
(1) |
|
(2) |
|
(3) |
|
(4) |
| |||
위 그림과 같이 (1)-(4) 까지 모두 네가지 경우가 있습니다. |
|||||||
다시 뒤집어 원래의 윗면이 위로 가도록 합니다. |
|||||||||
(1) |
|
(2) |
|
(3) |
|
왼쪽 그림과 같이 A와 B가 둘째 줄의 가운데 색 C와 맞추어진 경우가 세가지 경우로 나타납니다. |
|||
아래와 같은 동작을 하면 (1)→(2)→(3)으로 차례로 만들어집니다. |
|
|
|
|
|
|
|
|
바닥면을 위로 향하게 합니다. |
||||||||
(1) |
|
(2) |
|
(3) |
|
왼쪽 그림과 같이 |
||
아래와 같은 동작을 하면 (1)→(2)→(3)으로 차례로 만들어집니다. |
|
|
|
|
|
|
|
|
바닥면을 위로 향하게 합니다. |
|||||
(a) |
|
왼쪽 (a) 그림에서와 같이 VI 단계에서 완성된 인접한 두쌍의 색 부위를 'A'라 하고, 그 양측의 조각을 'B'라고 표시해 보겠습니다. |
|||
(b) |
|
큐빅 전체를 살짝 돌려 왼쪽 (b) 그림과 같이 보이게 한 후, B와 인접한 두 면의 가운데 색, 즉 C색과 D색이 B조각에 모두 들어있는지 확인합니다. |
|||
(c) |
|
만약 B조각에 C와 D색이 들어있지 않다면, (c) 그림과 같이 그렇게 되도록 아래 두 줄을 돌려 맞추어 놓습니다. |
|||
그 후, 다음과 같은 동작을 하면 B가 C와 D의 색을 포함하게 되면서 귀퉁이 두 군데만 남게 됩니다. |
|
|
|
|
|
|
|
다시 뒤집어 원래의 윗면이 위로 가도록 합니다. |
||||||
(1) |
|
(2) |
|
왼쪽 그림과 같이, (1) 틀린 색이 대각선 방향에 놓인 경우, (2) 틀린 색이 한쪽 면으로 몰려있는 경우 - 이렇게 두 가지 경우가 있습니다. |
||
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
완성 |
(참고로 이 공식의 source는 http://perso.infonie.fr/oxboy/jeux/rubiks/index.html에서 발췌
한 것입니다.)
-> 정면을 시계방향(오른쪽)으로 90도 회전
F2 -> 정면을 180도 회전
F' -> 정면을 반시계방향(왼쪽)으로 90도 회전
R -> 오른쪽면을 시계방향으로 90도 회전
R2 -> 오른쪽면을 180도 회전
R' -> 오른쪽면을 반시계방향으로 90도 회전
B -> 뒷면을 시계방향으로 90도 회전 B2 이하 같은방법으로 표기
L -> 왼쪽면을 시계방향으로 90도 회전 L2이하동문.
U -> 윗면을 시계방향으로 90도 회전
D -> 아랫면을 시계방향으로 90도 회전
M -> 정면의 세로 가운데줄을 시계방향으로 90도 회전
E -> 정면의 가로 가운데줄을 시계방향으로 90도 회전
S -> 윗면의 가로 가운데줄을 시계방향으로 90도 회전
>
전체순서
1. 흰면의 십자와 가운데를 둘째줄까지 맞춘다. (흰면이 바탕색으로 나오네요 죄송..)
2. 첫째줄의 네 귀퉁이를 맞춘다.
3. 둘째줄까지 맞춘다.
4. 노란면(셋째줄의 십자를 맞춘다.
5. 노란면의 가운데출을 맞춘다
6. 노란면을 전부 모은다.
7. 노란면의 귀퉁이까지 맞춰 완성!
1단계 - 한면 십자 맞추기
처음 시작하는 한면을 십자(+)모양으로 맞추는 단계이다.
십자로 맞추되 위 그림처럼 이웃한 네면의 중앙조각의 색에 각각 일치되게 맞춘다.
다음은 여러상황에서 맞추는 방법들인데 한가지만 있는 것은 아니다.
공간지각력을 이용해서 다른방법들도 찾아보자
2단계 - 네 귀를 맞춰 첫째줄 완성하기
네 귀를 제자리에 맞게 한면을 맞춰서 첫째줄을 완성하는 단계이다.
우선 밑의 그림처럼 윗면의 색이 밑줄에서 옆을 바라보는 기본형의 귀퉁이 조각을 찾는다.
밑줄을 돌려서 귀퉁이 조각을 들어갈 자리 밑에 놓고 다음과 같은 방법으로 맞춘다.
기본형이 아닌 경우는 다음과 같은 방법으로 기본형으로 만들어 준다.
3단계 - 둘째줄 완성하기 (맞춘면을 밑으로 둔상태에서 두줄완성)
둘째줄의 네 모퉁이를 맞춰서 두줄을 완성하는 단계이다.
우선 셋째줄의 모서리 중앙 조각(두가지색이 붙어있는 조각)중에서
윗면의 색(노란색)이 없는 조각을 찾는다.
그 조각을 기준으로 밑에 두줄을 돌려서 그림처럼 옆면의 중앙조각의 색과 일치되게한다.
그다음 그 조각이 왼쪽 모퉁이로 들어가야 맞는지 오른쪽 모퉁이로 들어가야 맞는지를 파악한후
A,B결합중 해당하는 결합의 방법으로 맞춘다
이 방법으로 맞출때 이동되는 자리의(화살표가 가리키는) 조각은 셋째줄로 이동 되어진다.
그래서 셋째줄에 윗면의색이 없는 조각이 없을 때 즉, 윗면의 색이 없는 조각이
둘째줄 모퉁이에 들어가 있을 때 이 방법으로 맞춰서 셋째줄로 빼낸다
4단계 - 셋째줄의 윗면을 십자로 맞추기
셋째줄 윗면의 색(노란색)을 십자(+)모양으로 맞추는 단계이다.
기본형에서 밑의 방법대로 맞추면 십자로 완성된다
A의 경우도 같은 방법으로 맞춘다. 그러면 'ㅡ'형태가 되는데 옆으로 돌려서
B의 형태로 만들어주고 한번더 같은 방법으로 맞추면 기본형이 된다.
5단계 - 셋째줄의 모서리 중앙 네조각을 제위치에 넣기
십자로 맞춘 네조각들의 위치를 바꿔 제위치에 넣는 단계이다.
윗면(노란색)을 십자로 맞췄는데 네조각 모두가 제위치가 아닌상태는
밑의 두가지 경우처럼 두면만 맞는 경우 뿐이다.
(만일 한면의 색만 일치한다면 윗면을 시계방향이나
반시계방향으로 90°회전하면 A의 형태처럼 이웃한 두면의 색이 일치된다.)
모서리 중앙의 네조각중 이웃한 두조각이 맞는 A의 경우는
이웃한 두면중 왼쪽면을 정면으로 두고 다음의 방법으로 맞춘다
서로 반대편의 두조각이 일치하는 B의 경우는 C의 방법으로 맞추면
이웃한 두조각이 일치하게된다. 만약 일치되는 조각이 없을경우 윗면을
180°회전하면 두조각이 일치하게된다.
6단계 - 셋째줄의 윗면 완성하기
셋째줄 귀퉁이 네조각 윗면의 색을 맞춰서 윗면을 완성하는 단계이다.
기본형의 경우 밑의 방법대로 하면 윗면이 완성된다
C,D,E,F의 경우 위와 같은 방법을 사용하면 기본형이되고
A,B의 경우 같은 방법을 사용하면 각각 D,E의 형태가 된다.
7단계 - 셋째줄 네귀를 제자리에 넣어 완성하기
네귀를 제자리에 넣어 여섯면을 완성하는 마지막 단계이다.
A의 경우와 같이 한 개의 맞은 조각이 있을 때 다음의 방법으로 맞추어 완성한다.
틀린 세 개의 조각이 반시계방향으로 이동돼야 할 때는 맞은조각을 오른쪽 뒤로 놓고
C의 방법으로 맞추고 시계방향으로 이동돼야 할 때는 맞은조각을 왼쪽 뒤로 놓고
D의 방법으로 맞추면 완성된다.
특히 C의 밑줄친 기호는 6단계의 방법과 같음을 알 수 있다.
D의 방법도 C의 방법에 좌,우가 대칭되는 방법이다.
하나도 맞은 조각이 없는 B의 경우는 노란색면을 윗면으로 하고
아무면이나 정면으로 두고 C나 D의 방법을 사용하면 한조각이 맞게된다.
'잡동사니' 카테고리의 다른 글
c++ 더블링크드리스트 (0) | 2023.07.14 |
---|---|
아래에서 강의자료를 검색해 보아요.. 심심풀이 (0) | 2012.02.14 |
으뜸음 찾기 (0) | 2010.12.12 |
노대통령 서거 (0) | 2009.05.24 |
엑셀 vba정리 (0) | 2009.05.05 |